Macrocyclic diphosphine ligands in asymmetric carbon-carbon bond-forming reactions

Michael Widhalm ${ }^{\text {a, }}$, Petra Wimmer ${ }^{\text {a }}$, Gerd Klintschar ${ }^{\text {b }}$
${ }^{2}$ b Instiut fïr Organische Chemie, Universität Wien, Währingerssraße 38, A-1090 Wien, Austria
${ }^{\text {b }}$ Instime fïr Phusikalisehe Chemic, Universitial Gras, Ieinrichstraße 28, A-8010 Graz, Austria

Received 17 January 1996

Abstract

Seven chiral macrocyclic ligands with potential $\mathrm{O}_{2} \mathrm{P}_{2}$ and $\mathrm{N}_{2} \mathrm{P}_{2}$ coordination sites owing their chirality from the incorporation of an axial-chiral binaphthyl unit were used as chiral auxiliaries in transition metal catalyzed carbon-carbon bond-forming reactions. Three model reactions were investigated, and enantioselectivities are discussed on the basis of accepted mechanistic pathways by using X-ray structural analyses.

K'ywords: Chiral diphosphines; Macrocyclic ligands; Asymmetric allylic alkylation; X-ray structural analyses; Palladium; Nickel

1. Introduction

During the past decade progressively extensive studies have focused on the formation of asymmetric quaternary carbon centers under the catalysis of chiral transition metal complexes. A large number of reports has been published, and these are summarized in review auticles and books [1,2]. Highlights have been palladium and nickel catalyzed cross-coupling reactions with ferrocene ligands affording 3 -phenyl-1-butene and biaryls with up to 94 and 95% e.e. respectively [3,4]. Also palladium catalyzed allylic substitution reactions have been realized very successfully using P-P, P-N and $\mathrm{N}-\mathrm{N}$ ligands [5].

These results encouraged us to investigate the dependence of the asymmetric induction on the distance between the asymmetric moiety and the transition metal center. Simple model compounds like 2A-6A [6a,b] or 10A and 11A were therefore tested in typical catalytic reactions. A local C_{S} symmetry of the diphosphine sub-unit with cis P-phenyl groups constitutes an achiral array near the transition metal. A chiral "disturbance" is introduced by a C_{2}-symmetrical binaphthyl unit which is held at varying distance from the transition metal center by means of two polymethylenc ("spacer")

[^0]chains, thus introducing different degrees of chiral interaction. It is obvious that a direct relationship between asymmetric induction and the distance between the chiral center and transition metal is based on a rough simplification, because the existence of a preferred conformation of the spacer determines the actual distance. Therefore the expected correlation will only be observed if high conformative flexibility of the polymethylene chain and unrestricted access of reactants to the complexation sites exist.

In addition to dioxa-diphospha ligands, diaza-diphospha ligands were also investigated since the introd. in of nitrogen donor atoms might improve the efi.. . ancy of the catalysts; one of the nitrogen atoms may offer an additional complexation site during the catalytic cycle, thus lowering the risk of side reactions of coordinatively unsaturated species and forcing the metal into the center of the macrocycle. Moreover, the $\mathrm{N}-\mathrm{CH}_{3}$ groups could interact with the incoming substrate resulting in a preorganisation before any association step or oxidative addition were to take place.

2. Results and discussion

2.1. Synthesis of ligands and complexes

Macrocycles 10 and 11 with phosphorus and nitrogen donor atoms were prepared from dibromides 8 and 9 [7]

(S) 1

$n=2$	$2 A$
3	$3 A$
4	$4 A$
5	$5 A$
6	$6 A$

(G_{1} symmetry)
AE 2 10A
3 119

Sheme 1.
respectively, and yielded cither a single diastereoisomer with C_{1} symmetry (IIA) or a mixture of diastereoisomers which were separated on deactivated silica gel [7] (10A and 10B). All liezands proved to be sufficiently stable to enable their purification and handing under air without precuutions. Enantiopure samples of the macrocyeles were prepared from the optically active precursor $(=)(5)=7$ in the sume way.

From C_{1} symmetrical ligands, nickel(II) complexes were isolated. Treatment of 10A or 11 A with NiCl_{2} afforded orange-brown crystalline products. Both complexes showed similar NMR spectra and, moreover. from $11 \mathrm{~A} \cdot \mathrm{NiCl}_{2}$, an X-ray structure analysis could be obtained which revealed a slightly distorted squareplanar complex geometry without coordination of nitrogen atoms (see below). Accordingly, we assume the exclusive or at least pred minant operation of a $P=P$ coordinated complex of 11A during catalysis. In the case of $10 \mathrm{~A} \cdot \mathrm{NiCl}_{3}$, however, the (presumable) $\mathrm{P}_{-\mathrm{P}}$ coordinated nickel complex was isolated in low yield: formation of $\mathrm{N}-\mathrm{P}$ coordinated complexes cannot be excluded since the nitrogen atoms are in an appropriate geometric arrangement.

2.2. X-ray structural analysis

From one ligand (2A) and two of the complexes ($2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}$ and $11 \cdot \mathrm{NiCl}_{3}$) the crystal structures could
be determined. Characteristic structural features are listed in Table 1.

The biaryl angles range from 112.13° for 2A to 76.22° for $11 \mathrm{~A} \cdot \mathrm{NiCl}_{2}$. As observed previously, these pronounced changes occur easily in 1,1 '-binaphthyl series and are caused by the flat energy minimum between the cisoid and transoid conformation at approximately 65 and 115° respectively [$6 \mathrm{~b}, \mathrm{c}, \mathrm{d}$]. The ease of conformational changes during coordination to nickel(II) or palladium(II) and an "out of center" torsion of the $\mathrm{P}_{2} \mathrm{MCl}_{2}$ ($\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$) fragment, which resulted in a nearly perpendicular arrangement of the macrocycle and the complex unit, seem to compensate for the presumptive steric strain, thus stabilizing these complexes. The only evidence for steric strain was found in deviations of carbons 14-11-61-64 from linearity by $1.0 / 5.4^{\circ}$ (2A) to $6.91 / 3.16^{\circ}\left(2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}\right)$. Both complexes show a slightly distorted square-planar array with typical angles and distances and no nitrogen coordination in 11A. NiCl_{2}.

2.3. Asymmetric catalysis

The present paper deals with three catalytic carboncarbon coupling reactions with different mechanistic

Table 1
Selected data from crystal structure analyses "

$\mathrm{X} \sim 0 . \mathrm{N}$
General labeling seheme for crystal structures

	2 A	2A.PdCl	IIA $\cdot \mathrm{NiCl}_{2}$		
Biarylangle	112.13°	101.57°	76.22°		
"Out of cycle torsion" of the metal complex ${ }^{n}$	-	$99.3{ }^{\circ}$	83.03 ${ }^{\circ}$		
$\mathrm{Pl}-\mathrm{M}-\mathrm{PSI}$	\sim	$86.88{ }^{*}$	84.62 ${ }^{\circ}$		
Pl-M	\cdots	2.210	2.134		
PSI-M	-	2.205	2.134		
Pl-PSI	3.219	3.036	2.982		
CIA M CIB		95.54°	$94.72{ }^{\circ}$		
ClA M	-	2.351	2.185		
CIB-M	-	2.347	2.199		
\|4-1	-6		1.0°	$-6.9{ }^{\circ}$	$6.5{ }^{\circ}$
64-61-11	$5.4{ }^{\circ}$	$-3.2{ }^{\circ}$	- 3.32°		
P1-31-81-P51	$4.9{ }^{\circ}$	0.8°	$5.7{ }^{\circ}$		

[^1]

Fig. 1. (a) Crystal structure of ligand 2A; hydrogen atoms and solvent molecules have been omitted for clarity. (b) Crystal structure of the palladium complex $2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}$; hydrogen atoms and solvem molecules have been omitted for clarity.
features which, according to proposed mechanisms, require chiral interaction in different sectors of the surrounding space $[8-10]$.

Reaction (1), the cross-coupling reaction between 1 -phenylethyl magnesium chloride and vinyl bromide under catalysis of nickel complexes, affords 3-phenyl1 -butene (12). Reaction (2) yields a homologue. 4 -phenyl-1-pentene (13), which is obtained by reaction of 1-phenylethyl magnesium chloride with allyl phenyl ether. Reactions (3) are allylic substitutions with dimet vo malonate as nucleophile.

Table 2 lists isolated yields and enantiomeric excesses (e.e.. in parentheses) of reactions (1)-(3) using

Scheme 2.
ligands with (S$)_{\text {axial }}$-configuration. Reaction (1) was conducted following a standard procedure [8a] with slight modifications. The product was isolated in moderate to good yield but asymmetric inductions were found to be low. Also, for reaction (2) the enantioselectivities were low and no dependence of the asymmetric induction from the length of the spacer was observed. The best result was obtained at $0^{\circ} \mathrm{C}$ with ligand 4 A , yielding $\mathbf{7 5 \%}$ of (S)- $\mathbf{1 3}$ with $\mathbf{2 3 \%}$ e.e. The allylic substitution reaction (3) ($\mathrm{R}=$ phenyl) afforded the product in good chemical yields and showed the expected dependence of e.e. from the length of the spacer group for 2A-6A. Under all conditions investigated so far the (R)-enantiomer predominates if ligands with (S$)_{\text {asial }}$ configuration are employed. A decrease of e.e. from 84

Table 2
Asymmetric carbon carbon coupling reactions "

Entry	Ligand ${ }^{\text {b }}$	Reaction (1) ${ }^{\text {c }}$	Reaction (2) ${ }^{\text {d }}$	Reaction (3)*
1	2A	50 (1S)	71 (8R)	83 (84R)
2	3A	67 (98)	73 (14R)	71 (50R)
3	4A	84 (6S)	$79(158){ }^{\text {r }}$	77 (31R)
4	5A	89 (4R)	73 (12R)	87 (11R)
5	6A	76 (7R)	73 (5S)	77 (17R)
6	10A	$62(0){ }^{\text {a }}$	79 (1S)	75 (52R)
7	11A	54(16R)	75 (6S)	41 (77R) ${ }^{\text {b }}$

alsolated yield (enantiomeric excess, absolute configuration). "The absolute configuration was $(S)_{\text {antal }}(S, R)_{p}$ as depicted in Scheme I; symmetry C_{1}. ${ }^{\text {s }}$ Scheme 2. reaction (1): vinyl bromide (7.1 mmol), 1 -phenylethyl magnesium chloride (11.8 mmol), $\mathrm{NiCl}_{2}(0.5 \mathrm{~mol} \%$). ligand ($0.5 \mathrm{~mol} \%$), solvent Et, $\mathrm{O}, 20 \mathrm{~h}, 0^{\circ} \mathrm{C}($ Section 3.5 . $) .{ }^{\mathrm{C}}$ Scheme 2, reaction (2): allyl phenyl ether (20 mmol), 1 -phenylethyl magnesium chloride (20 mmol), $\mathrm{NiCl}_{2}(0.2 \mathrm{~mol} \%)$, ligand $(0.2 \mathrm{~mol} \%)$, solvent $\mathrm{E}_{2} \mathrm{O}, 4-20 \mathrm{~h}$ (TLC), RT (Section 3.5.2). ${ }^{\text {T}}$ Scheme 2. reaction (3): (E). 1,3 diphenylprop-3-ene- $|-y|$ acetate (1 mmol), dimethyl malonate (3 mnol), BSA (3 mmol). KOAc (catalytic
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4-18 \mathrm{~h}, \mathrm{RT}\left(\right.$ Section 3.5.3). ${ }^{\prime} \mathrm{At} 0^{\circ} \mathrm{C} 75$ (23S). ${ }^{g} \mathrm{At} 10^{\circ} \mathrm{C}$.
${ }^{\mathrm{h}}$ No complete conversion obtained.

Fig. 2. Crystal structure of the nickel complex $\mathbf{H A} \cdot \mathrm{NiCl}_{2}$: hydrogen atoms and solvent molecules have been omitted for clarity.

Table 3
Allylic substitution ${ }^{3}$ (reaction (3))

Entry	Substrate	Ligand ${ }^{\text {b }}$	Base	Reation time ${ }^{c}$	Yield ${ }^{\text {d }}$	E.e. ${ }^{\circ}$ (configuration)	Notes ${ }^{\text {' }}$
1	$\mathrm{R}=\mathrm{Pb}$	2 A	BSA	1 h	83	84 (R)	
2	$\mathrm{R}=\mathrm{Ph}$	3 A	BSA	5 h	71	50 (R)	
3	$\boldsymbol{R}=\mathrm{Ph}$	AA	BSA	18 H	77	31 (R)	
\pm	$\mathrm{R}=\mathrm{Ph}$	SA	BSA	18月	87	$11(R)$	
5	$\mathbf{R}=\mathbf{P h}$	6 A	BSA	20 h	47	17 (R)	
6	$\mathrm{K}=\mathrm{Ph}$	10A	BSA	4h	75	52 (R)	
7	$\mathrm{R}=\mathrm{Ph}$	114	BSA	20 h	41	77 (R)	
s	$\mathrm{R}=\mathrm{Ph}$	2 A	NaH	18 h	89	$82(\mathrm{R})$	
9	$\mathbf{R}=\mathbf{P h}$	3 A	NaH	6 h	82	37 (R)	
10	$\mathrm{R}=\mathrm{Ph}$	4 A	NaH	on	85	16 (R)	
11	$\mathrm{R}=\mathrm{Ph}$	SA	NaH	6 h	85	$10: K)$	
12	$\mathrm{R}=\mathrm{Ph}$	61	NaH	6 h	81	5 (R)	
13	$R=P / 1$	10a	NaH	4 h	99	59 (R)	
14	$\mathbf{R}=\mathbf{P} \mathbf{h}$	11A	NaH	4 h	83	77 (R)	
15	$\mathbf{R}=\mathrm{Ph}$	2 A	BSA	18 h	91	$84(R)$	
16	$\mathrm{R}=9 \mathrm{~h}$	2 A	BSA	1 h	83	86 (R)	$P_{d_{2}}\left(\mathrm{dbax}_{4}\right.$
17	$R=P h$	2 A	BSA	2 days	-10	$=$	$\mathrm{Pd}(\mathrm{OAC})_{2}$
18	$R=P h$	3 A	BSA	2 days	74	$52(\mathrm{R})$	
19	$\mathrm{R}=\mathrm{Ph}$	2 A	BSA	18 h	81	$79(\mathrm{R})$	[Lig.] $=0.5 \mathrm{molm}$
20	$\mathbf{R}=\mathbf{P h}$	2 A	BSA	18 h	85	85 (R)	[Lig.] ${ }^{2} \mathbf{~ m o l \% ~}$
21	RCH,	2 A	BSA	24 h	85	$21(+)$	
22	RCH,	2 A	BSA	24h	8	$23(+)$	$0^{\circ} \mathrm{C}$
23	RCH,	2 A	BSA	24 n	64	$24(+)$	$-10^{\circ} \mathrm{C}$
24	RCH,	2 A	HSA	18 h	8.4	$20(+)$	solvent DMF
25	RCH_{1}	2 A	BSA	18 h	83	$15(+)$	solvent $\mathrm{CH}_{3} \mathrm{CN}$
26	RCH,	10A	BSA	1811	84	<1	
27	RCH_{4}	114	BSA	1817	54	33 (+)	

 malonate (1.5 mmol), sodium hydride (1.5 mmol), $\mathrm{L}^{\bullet} \cdot \mathrm{PdCl}_{\text {: (}}\left(1 \mathrm{molfe}\right.$), solvent THF, RT (Section 3.5.4). ${ }^{\text {b }}$ The absolute configuration was $(S)_{3}(S, R)_{p}$ as depicted in Scheme $1,{ }^{8}$ Entries $\mid-20$ were monitored by TLC and stopped either if no starting material could be detected or if no
 chiral GC (Octakis(6-0-methyl-2.3-di-0-pentyl)- - -cyctodextrin) and shift experiments (Eu(hfc) ${ }^{2}$) (entries 21-27). ${ }^{\text {a }}$ Variation of standard procedures.
to 17% is observed within the group of homologues. In contrast to these ligands, 10A and 11A with $\mathrm{N}-\mathrm{CH}_{3}$ instead of O showed the opposite behavior: 11A (77% e.e.) exhibits a significantly higher efficiency than 10 A (52% e.e.). We speculated that this reversal could be due to the presence of more than one catalytically active palladium complex of 10A.

Since reaction (3) seemed to be sufficiently sensitive to structural variations, additional experiments were made to extend the scope and limitations of the new auxiliaries (Table 3). If N, O-bis(trimethylsilyl)acetamide (BSA) was substituted by NaH, enantiomeric excesses are somewhat lower but a similar trend is observed. In these experiments isolated PdCl_{2} complexes of $2 \mathrm{~A}-6 \mathrm{~A}$ [$6 a, b]$ were used, which were found to give better reproducible results. We also noticed an effect previously reported by Allen et al. [11], that the concentration of reactants influenced the rate of the reaction significantly while the e.e. remained unaffected; with BSA in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the conversion was completed
within 1 h but the same reaction in 4 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ took about 18 h to go to completion (entries 9,15). In addition to $\left[\mathrm{Pd}_{(\mathrm{C}}^{3} \mathrm{H}_{5}\right) \mathrm{Cl}_{2}, \mathrm{Pd}_{2}(\mathrm{dba})_{4}$ [12] (dba $=$ $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{5}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were also tested as sources for palladium. $\mathrm{Pd}_{2}(\mathrm{dba})_{4}$ showed slightly higher e.e. with good chemical reactivity, but $\mathrm{Pd}(\mathrm{OAc})_{2}$ proved to be largely unreactive (entries $1,16,17$). Lowering the reaction temperature decreased the reaction rate dramatically, but the asymmetric induction was only slightly improved (entries 9 , 18). Finally, the ligand/Pd ratio was varied (entries 19 ($0.5: 1$), $8(1: 1), 20(2: 1)$). The results pointed to a 1:1 complex as the catalytically active species with an equilibrium constant above 1 . These results encouraged us to extend our investigations to allylic substrates without phenyl groups, like (E)-pent-3-ene-2-yl acetate (14) and 3-acetoxy-cyclohex-1-ene, both substrates for which reports of high asymmetric induction are rare [13]. Using our most efficient ligand, 2A, 14 was obtained in good chemical yield (85%), but the e.e. was
a)

(b)

Fig. 3. (a) Diastereomeric intermediates interconvertible via a $\pi-\sigma-\pi$ mechanism. (b) Schematic representation of the presumptive predominat ing allylic intermediate in a $\mathrm{Pd}-2 \mathrm{~A}$ catalyzed allylic alkylation.
low ($\mathbf{2 1} \%$). This result could not be improved significantly either by lowering the temperature (entries 21-23) or by varying the solvent (entries 21, 24, 25). A slightly higher asymmetric induction could be achieved with 11A (33% e.e.), while 10A failed to give any enantioselectivity (entries 26, 27). The reaction with the cyclic substrate 3-acetoxy-cyclohex-1-ene proceeded smoothly with good chemical yield, but with almost no enantioselectivity (not included in Table 2).

Despite the limited number of experiments the striking differences in the enantioselection exhibited in three C-C coupling reactions is worth consideration. We think that this behavior can be rationalized on the basis of different mechanistic suggestions for (1)-(3), as reported in the literature [$8-10$].

Model reactions (1) and (2), where chiral Grignard reagents are involved, generally differ from (3). In reactions (1) and (2) the configuration determining step is the enantioselective formation of an alkyl metal intermediate with both carbon fragments σ-bound to the metal center. This is followed by reductive elimination of the product with retention of the configuration. On the contrary, in reaction (3) the nucleophile attacks the terminal carbon atom of a π-allyl complex from "outside" ${ }^{\text {. }}$

Since in (1) and (2) the enantiodetermining step is the selective reaction of one enantiomeric form of the Grignard reagent, this reaction is usually considered as a kinetic optical resolution [8a]. In both cases a diorganometal complex in which the asymmetric centeis already fixed precedes the reductive elimination of the product. For reaction (1), proceeding under the catalysis of ferrocenyl- $\mathrm{N}=\mathrm{P}$ ligands, a mechanism was proposed which postulates a weak $\mathrm{N}=\mathrm{Mg}$ interaction to account for high enamtioselectivity [8a] in contrast, an epimerisation of the chiral carbon center via β-hydride elimination has also been discussed [8a,14]. If no appropriate donor atom in the ligand structure is available. only transient steric intcractions of the Grignard reagent with the chiral earbon back-bone may operate to induce some enantiodifferentiation. Tentatively, we assume that this stereoselective association step is responsible for the ee. rather than a difference in reactivity of the diastereomeric diorganometal intermediates. Suggestions for a mechanism of (2) are sparse, but π-allyl intermediates are most likely to be involved [9b]. Nevertheless, it seems to be a common feature of both cases that only a trajectory which is chirally modelled in an ideal manner will direct selectively one enantiomeric nucleophile to the reaction center.

For coupling (3), for which a different mechanism was suggested [10], the situation is much more promising. Since a non-chiral mucleophile attacks the symmetrical allyl intermediate from "outside", i.e. opposite the transition metal without preceding coordination at the metal center. the enantioselectivity of the overall reac-
tion is governed by two features: (a) the preferred geometry of the allyl complex (Fig. 3(a) I and II) and (b) the regioselectivity of the nucleophilic attack.

From molecular modelling calculations we gained some evidence for a positive interaction between the 1,3-diphenyl-allyl moiety and the P-phenyl rings, which may be responsible for a highly preferred steric arrangement of the π-allyl complex [15]. This hypothesis is corroborated by the dramatic drop in e.e. if the corresponding dimethyl-allyl substrate is employed. Since the terminal carbon atoms of the allyl fragment are ca. 3 \AA Aistant from each other, good regioselectivity caused by different steric interactions is relatively easily attained. A hypothetical structure of the preferred intermediate with ($\mathbf{S})_{\text {avial }}$-configuration is depicted in Fig. 3(b), showing a significantly better accessibility of the A-labeled allylic carbon from which an (R)-configurated product arises.

3. Experimental details

3.1. General procedures

M.p.: Kofler Heiztisch-Mikroskop (uncorrected). NMR: Bruker AC 250 F , AM 400 WB: unless otherwise noted spectra were recorded in CDCl_{3} at 250.13 and $400,13 \mathrm{MHz}$ respectively (${ }^{1} \mathrm{H}$), $100,62 \mathrm{MHz}$ ($\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$, J-modulated), and $161.98 \mathrm{MHz}\left({ }^{31} \mathrm{P}\left({ }^{\prime} \mathrm{H}\right)\right.$). Abbreviations: br, broad; p, pseudo. Chemical shifts δ are given in parts per million relative to 'TMS (${ }^{\prime} \mathrm{H},{ }^{\prime \prime} \mathrm{C}$) and $85 \% \mathrm{H}_{1} \mathrm{PO}_{4}$ (${ }^{(1)}$). Phosphorus carbon coupling constants (J_{c}) were identified by comparison of "C NMR spectra recorded at 62.90 and 100.62 Mily respectively. MS: Varian MAT-CH7: FAB-MS: Finnigan MAT-95. Polarimeter: Perkin-Elmer 241 (d ea 1 dm. thermostatted). Elemental analyses: Mikroanalytisches Laboratorium der Universitat Wien.

3.2. Solvents and reagents

THF was distilled from potassium benzophenone ketyl, $\mathrm{Et}_{2} \mathrm{O}$ from LiAlH_{4} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acetonitrile and DMF were distilled from CaH_{2}. DMF was stored over molecular sieves ($4 \AA$). Ethyl acetate (EE) was distilled. petroleum ether (b.p. 60-70 ${ }^{\circ} \mathrm{C}, \mathrm{PE}$) was used as purchased. All the other solvents were analytical grade. TLC: TLC-aluminium sheet silica gel 60. F_{554} (Merck). Column chromatography: silica gel $60,230-400$ mesh ASTM (Merck); for the separation of diastereomers silica gel was dried for two diys at $140-160^{\circ} \mathrm{C}$. A calculated amount of waler was added with shaking and the adsorbant was allowed to stand for two days to reach homogeneity.

Allylphenylether [16], tetrakis(dibenzylideneaceton)dipalladiuni(0) [12], 1,2-bis(phenylphosphino)benzene
[17], N,O-bis(trimethylsilyl)acetamide (BSA. distilled, Fluka), n-butyl lithium (solution 1.6 M in hexane, Merck), di- μ-chloro-bis- η^{3}-allylpalladium(II) (Strem), (E)-pent-3-ene-2-yl acetate [18]. (E)-1.3-diphenylprop3 -ene-1-yl acetate [19], dimethyl malonate (Aldrich, $99+\%$), nickel chloride and nickel chloride hexahydrat (Aldrich, 99%), palladium(II)acetate (Strem, 97%), 1phenylethyl chloride [20], sodium hydride (dispersion, $55-60 \%$, Fluka), tris-[3-(heptafluoropropylhydroxy-methylene)-d-camphorato]-europium [Eu(hfc) ${ }_{3}$](Sigma), vinyl bromide (Aldrich, 98%).

3.3. Preparation of macrocyclic diaza-diphospha ligands (10 and 11)

3.3.1. General procedure

A Schlenk tube was carefully dried and charged with 20 ml of dry THF. After degassing by three freeze-pump-thaw cycles, 1,2-bis(phenylphosphino)benzene ($353 \mathrm{mg}, 333 \mu 1,1.2 \mathrm{mmol}$) was added and subsequently ${ }^{n} \mathrm{BuLi}$ solution ($1.5 \mathrm{ml}, 2.4 \mathrm{mmol}$) was added dropwise over 15 min . In a second Schlenk tube a degassed solution of 1 mmol of bromoamine [7] (526 mg of 8.554 mg of 9) in 18 ml of THF was prepared. These two solutions were slowly and synchronously added to a well stirred volume of approximately 100 ml of degassed THF [7], avoiding excess of one of the reactants ($1-1.5 \mathrm{~h}$). After the addition was complete stirring was continued for 1 h and the solvent was evaporated. Water was added and the mixture was extracted with $3 \times 20 \mathrm{ml}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with water and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Afer removal of the solvent under vacuo the residue was purified by column chromatography as given below.
3.3.2. 1.10-Dimethyl-4.7-diphenylbensoleldinaphtho-12.1-k:1.,2'-m/-1.10-diasa-4,7-diphosphew yctoretradeca5.11 .13 -riene (10)

The crude mixture contained isomers 10A and 10B which were separated on deactivated silica gel (15% (w / w) $\mathrm{H}_{2} \mathrm{O}, 65 \mathrm{~g}, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 65: 35$).

10A. 339 mg (52%).'H NMR $\delta: 1.91$ (m .1 H), 2.19 (s, 3H), 2.32 (s, 3H), 2.30-2.54 (m, 3H), 3.17 (m, 3H), $3.61(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.17(\mathrm{~m} .7 \mathrm{H}), 7.21-$ $7.44(\mathrm{~m}, 1 \mathrm{H}) .7 .50(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{cl}, 1 \mathrm{H} . J 8.9 \mathrm{~Hz})$, $7.75(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}), 7.82(\mathrm{~d}$, $1 \mathrm{H}, J 7.9 \mathrm{~Hz}$, $7.92(\mathrm{~d}, \mathrm{IH}, J 8.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR 8: $26.64\left(\mathrm{CH}_{2}, \mathrm{dd}, J_{\mathrm{CP}}, 5.3,15.2 \mathrm{~Hz}\right), 29.07\left(\mathrm{CH}_{2}, \mathrm{dd}\right.$, $\left.J_{\text {CP }} 2.6,13.1 \mathrm{~Hz}\right), 41.72\left(\mathrm{CH}_{3}\right), 42.21\left(\mathrm{CH}_{3}\right), 52.27$ $\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}}, 17.3 \mathrm{~Hz}\right), 54.41\left(\mathrm{CH}_{2}, \mathrm{dd}, J_{\mathrm{CP}}, 5.5,29.3\right.$ $\mathrm{Hz}), 120.25(\mathrm{CH}), 122.26(\mathrm{CH}), 123.51(\mathrm{CH}), 124.04$ $(\mathrm{CH}), 125.68(\mathrm{CH}), 125.79(\mathrm{CH}), 126.14(\mathrm{CH}), 126.49$ $(\mathrm{CH}), 127.39(\mathrm{C}) .127 .59(\mathrm{CH}), 127.84(\mathrm{CH}), 128.09$ $(\mathrm{CH}), 128.18(\mathrm{CH}), 128.32(2 \mathrm{CH}), 128.43\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}}\right.$ $5.9 \mathrm{~Hz}), 128.50\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 6.0 \mathrm{~Hz}\right), 128.60(\mathrm{CH})$,
128.84 (CH), 129.58 (C), 129.71 (C), 130.76 (C). 132.27 $\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 6.5 \mathrm{~Hz}\right), 132.39\left(\mathrm{CH}, \mathrm{d} . J_{\text {CP }} 17.1 \mathrm{~Hz}\right)$, $132.81\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 17.6 \mathrm{~Hz}\right), 132.86\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 8.1\right.$ $\mathrm{Hz}), 134.35(\mathrm{C}), 134.52(\mathrm{C}), 138.38\left(\mathrm{C}, ~ \mathrm{dd}, J_{\mathrm{CP}} 9.8\right.$, 15.0 Hz), 138.52 (C, dd, $J_{\mathrm{CP}} 7.7,14.5 \mathrm{~Hz}$), 143.57 (C, dd. $J_{\mathrm{CP}} 13.2 .30 .1 \mathrm{~Hz}$), 146.94 ($\mathrm{C}, \mathrm{dd}, J_{\mathrm{CP}} 12.2,31.4$ Hz), 148.53 (C), 150.15 (C) ppm. ${ }^{31} \mathrm{P}$ NMR 8: -23.9, $-21.8\left(\mathrm{AB}\right.$-system, $\left.J_{\mathrm{AB}} 134.9 \mathrm{~Hz}\right) \mathrm{ppm}$. MS ($170^{\circ} \mathrm{C}$): $658\left(\mathrm{M}^{+}, 17 \%\right)$. Anal. Found: C, 79.20; H, 6.43; N, 4.15. $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{2}$ Calc.: C, 80.22; H, 6.12; N, 4.25\%.
(S)-10A: $[\alpha]_{n}^{20}-414(589 \mathrm{~nm}),-435(578 \mathrm{~nm})$, $-516(546 \mathrm{~nm}),-1167(436 \mathrm{~nm})\left\{c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}$.

10B. 66 mg (10%). ${ }^{1} \mathrm{H}$ NMR $\delta: 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.33-$ $2.51(\mathrm{~m}, 4 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m} .2 \mathrm{H}), 7.04(\mathrm{~d}, 2 \mathrm{H}$. $J 8.4 \mathrm{~Hz}), 7.11-7.30(\mathrm{~m}, 16 \mathrm{H}), 7.41(\mathrm{~d}, 2 \mathrm{H}, J 8.9 \mathrm{~Hz})$, 7.46 (m, 2H), $7.79(\mathrm{~d}, 2 \mathrm{H}, J 8.4 \mathrm{~Hz}), 7.84(\mathrm{~d}, 2 \mathrm{H}, J$ $8.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $8: 29.74\left(\mathrm{CH}_{2}, \mathrm{t}, J_{\mathrm{CP}} 13.6 \mathrm{~Hz}\right)$, $41.01\left(\mathrm{CH}_{3}\right), 53.52\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}} 29.8 \mathrm{~Hz}\right), 121.61$ (CH), 123.87 (CH), $125.85(\mathrm{CH}), 126.19(\mathrm{CH}), 127.24$ $(\mathrm{CH}), 127.77(\mathrm{CH}), 128.04\left(\mathrm{CH}, \mathrm{d}, J_{\text {cp }} 4.6 \mathrm{~Hz}\right), 128.58$ (CH), 128.90 (C), 129.26 (CH, d, $J_{\text {CP }} 9.2 \mathrm{~Hz}$), 130.39 (C), $130.87\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 16.3 \mathrm{~Hz}\right), 134.28$ (C), 138.24 $\left(\mathrm{CH}, \mathrm{br} \mathrm{d}, J_{\mathrm{C}}, 31.4 \mathrm{~Hz}\right), 139.71\left(\mathrm{C}, \mathrm{d}, J_{\mathrm{CP}} 13.2 \mathrm{~Hz}\right)$, 144.35 (C, br m), 150.65 (C) ppm. ${ }^{31}$ P NMR 8: -14.1 (br s) ppm. MS ($180^{\circ} \mathrm{C}$): $658\left(\mathrm{M}^{+}, 5 \%\right)$. Anal. Found: C. $78.96 ; \mathrm{H}, 5.90 ; \mathrm{N}, 4.12 . \mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{2}$ Calc.: C, 80.22; H, 6.12; N, 4.25%.
(S)-10B: $[\alpha]_{\Lambda}^{20}-237(589 \mathrm{~nm}),-248(578 \mathrm{~nm})$, $-292(546 \mathrm{~nm}),-598(436 \mathrm{~nm})\left\{c=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}$.
3.3.3. 1.12-Dimethyl-5.8-diphenylhensolfldinaphtho-12.1-m:1'.2'-o)-1.12-diasu-5.8-diphosphacyclohexa-deca-6.13.15-miene (11A)

The crude product was purified by chromatography on silica gel (PE/EE 95:5) to give l1A: 350 mg (51%); the racemic ligand was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} ;$ m.p. $289-291{ }^{9} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\delta: 0.52$ (m. $111), 0.97(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.78(\mathrm{~m} .211), 1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.90-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 31 \mathrm{I}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}$, 2 H), 2.65-2.72 (m, 1H), 2.68 ($\mathrm{s}, 3 \mathrm{H}$), 2.88 (m, 1H), $6.54(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J$ 8.5 Hz), 7.07 (d, $1 \mathrm{H}, J 8.7 \mathrm{~Hz}$), $7.14(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~m}$. 1H), 7.25-7.35 (m, 12H), 7.41 (m, 1H), 7.59 (d. 1H. J $8.9 \mathrm{~Hz}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J 7.9 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J 8.1 \mathrm{~Hz})$. $7.91(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\delta: 22.79\left(\mathrm{CH}_{2}\right.$. $\left.\mathrm{dd}, J_{(\mathrm{p}} 5.1,8.8 \mathrm{~Hz}\right), 24.52\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{(\mathrm{c}, \mathrm{p}} 19.9 \mathrm{~Hz}\right)$, $25.21\left(\mathrm{CH}_{2}, \mathrm{dd}, J_{\mathrm{CP}}, 3.0,15.5 \mathrm{~Hz}\right), 26.05\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}}\right.$ $17.3 \mathrm{~Hz}), 39.40\left(\mathrm{CH}_{3}\right), 41.62\left(\mathrm{CH}_{3}\right), 55.98\left(\mathrm{CH}_{2}, \mathrm{~d}\right.$. $\left.J_{\mathrm{CP}} 8.7 \mathrm{~Hz}\right), 57.20\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}} 13.3 \mathrm{~Hz}\right), 121.06$ $(\mathrm{CH}), 121.32(\mathrm{CH}), 123.29(\mathrm{CH}), 123.87(\mathrm{CH}), 125.87$ (2 CH), $126.08(\mathrm{CH}), 126.41$ (CH), 126.91 (C). 127.25 $(\mathrm{CH}), 127.63(\mathrm{CH}), 127.75(\mathrm{CH}), 128.12(\mathrm{CH}), 128.15$ $\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}}, 5.1 \mathrm{~Hz}\right), 128.40(2 \mathrm{CH}), 128.42\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}}\right.$ $5.0 \mathrm{~Hz}), 128.62(\mathrm{CH}), 129.00(\mathrm{C}), 129.05(\mathrm{CH}), 129.56$ (C), $130.46(\mathrm{C}), 131.12\left(\mathrm{CH}, \mathrm{d}, J_{\text {Cp }} 15.5 \mathrm{~Hz}\right), 132.31$ $\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{c}}, 8.1 \mathrm{~Hz}\right), 133.38\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{Cp}}, 19.1 \mathrm{~Hz}\right)$.
133.45 (CH), 134.68 (C). 134.87 (C), 137.14 (C, dd, $\left.J_{\text {CP }} 10.0,15.7 \mathrm{~Hz}\right), 140.98$ (C. dd. $J_{\text {CP }} 5.2,14.6 \mathrm{~Hz}$), $144.12\left(\mathrm{C}, \mathrm{dd}, J_{\mathrm{Cp}} 14.4,30.1 \mathrm{~Hz}\right), 148.60\left(\mathrm{C}_{4} \mathrm{dd}, J_{\mathrm{CP}}\right.$ 14.0, 33.7 Hz). 148.85 (C), 151.01 (C) ppm. ${ }^{31} \mathrm{P}$ NMR ס: -25.1, - 19.8 (AB-system, $J_{\mathrm{AB}} 151.2 \mathrm{~Hz}$) ppm. MS $\left(280{ }^{\circ} \mathrm{C}\right): 686\left(\mathrm{M}^{+}, 19 \%\right)$; FAB-MS: $687.5\left(\mathrm{M}^{+} \mathrm{H}\right.$, 100%): the isotopic pattern observed is as expected for $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{P}_{2}$.
(S)-11A: $[\alpha]_{\lambda}^{20}-309(589 \mathrm{~nm}),-324(578 \mathrm{~nm})$, $-380(546 \mathrm{~nm}),-772(436 \mathrm{~nm})\left\{c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right\}$.

3.4. Preparation of nickel complexes

3.4.1. General procedure

To a solution of 0.07 mmol of the ligand in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(17 \mathrm{mg}, 0.07 \mathrm{mmol})$ in ethanol (2 ml). More ethanol (2-4 ml) was added carefully and the solution was allowed to stand undisturbed at RT. The nickel complexes crystallized during 24 h and were separated, washed with a little ethanol and dried in vacuo.
3.4.2. (1,10-Dimethyl-4,7-diphenylbenzole/dinaphtho-[2.1-k: l'.2'-m]-1.10-diaza-4.7-diphosphacyclotetra-deca-5.11.13-triene)nickel(II)-dichloride (10A $\cdot \mathrm{NiCl}$)

20 mg ($\mathbf{3 6 \%}$, small orange e-brown crystals). ${ }^{\dagger} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{\mathrm{g}}$) 8: $2.40(\mathrm{~m} .2 \mathrm{H}), 2.44$ (s. 3 H), 2.69 ($\mathrm{s}, 3 \mathrm{H}$), $3.08(\mathrm{~m} . \mathrm{IH}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H})$. $3,85(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J 9.4 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J$ $8.4 \mathrm{~Hz}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J 8,9 \mathrm{~Hz}), 7.10(\mathrm{~m} .2 \mathrm{H}), 7.28(\mathrm{~m}$. $4 \mathrm{H}), 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~m}, 4 \mathrm{H}) .7 .67(\mathrm{~d}$. $1 \mathrm{H}, J 8.9 \mathrm{~Hz}), 9.72(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}) .7 .75(\mathrm{~d}, 1 \mathrm{H}, J$ $8.9 \mathrm{~Hz}) .9 .86(\mathrm{~d}, 1 \mathrm{H}, J 7.9 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz})$ ppm, " ${ }^{11} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ हि: $24.71\left(\mathrm{CH}_{2}, 1, J_{\mathrm{r}}, 15.9\right.$ $\mathrm{Hz}), 25.05\left(\mathrm{CH}_{2}, \mathrm{t}, \mathrm{J}_{\mathrm{Cp}}, 16.4 \mathrm{~Hz}\right), 40.10^{(}\left(\mathrm{CH}_{1}\right), 41.21$ $\left(\mathrm{CH}_{3}\right), 49.32\left(\mathrm{CH}_{2}, \mathrm{t}, \mathrm{J} 3.0 \mathrm{~Hz}\right), 51.12\left(\mathrm{CH}_{2}\right), 121.31$ (CH), $123.17(\mathrm{CH}), 124.22(\mathrm{CH}), 124.31(\mathrm{CH}), 125.78$ (CH), 126.06 (CH), 126.19 (CH), 126.42 (CH). 126.51 (C), $127.57(\mathrm{C}), 127.88(\mathrm{CH}), 128.12(\mathrm{CH}), 128.52$ $(\mathrm{CH}), 129.15\left(\mathrm{CH}, \mathrm{t}, J_{\mathrm{CP}} 5.4 \mathrm{~Hz}\right), 129.20\left(\mathrm{CH}, \mathrm{t}, J_{\mathrm{CP}}\right.$ $5.4 \mathrm{~Hz}) .129 .45(\mathrm{CH}), 130.18(\mathrm{C}), 130,45(\mathrm{C}), 131.09$ $\left(\mathrm{CH}\right.$, t. $\left.J_{\mathrm{r} w} 8.8 \mathrm{~Hz}\right), 131.56(\mathrm{CH}), 131.60(\mathrm{CH}), 131.78$ (C, t. $\left.J_{\text {Cp }} 50.3 \mathrm{~Hz}\right), 131.85\left(\mathrm{C}, \mathrm{t}, J_{\mathrm{cp}} 50.6 \mathrm{~Hz}\right), 132.10$ (CH, t. Jcp 18.0 Hz$), 132.27\left(\mathrm{CH}, \mathrm{t}, J_{\text {ep }} 4.3 \mathrm{~Hz}\right)$. $132.37\left(\mathrm{CH}, \mathrm{t} . J_{\mathrm{CP}} 4.5 \mathrm{~Hz}\right), 132.86(\mathrm{CH}, \mathrm{m}), 133.09$ (CH, m), 134.78 (C). 134.93 (C), 140.44 (C, $1 . J_{\text {Cr }} 43.8$ $\mathrm{Hz}) .141 .19$ (C, t, $J_{\mathrm{CP}} 43.2 \mathrm{~Hz}$), 148.81 (C), 150.34 (C) ppm. "P NMR (CD2Cl $) ~ \delta:+58.6$ (brs) ppm. FABMS: 751.4 ($\mathrm{M}-\mathrm{Cl}, 1029$); the isotopic patem observed is as expected for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{CIN}_{2} \mathrm{NiP}_{2}$.
3.4.3. (1.12-Dimethy-5,8-diphenylbensolfidinaph who 12.1-m: 1.2'ol-1.12-dia:n-5,8-diphosphacyctohera-decu- $6.13,15$-triene mickelliI)-dichloride (11A $\cdot \mathrm{NiCl}$)
$45 \mathrm{mg}(78 \mathrm{c}$, orange crystals). 'H NMR $\delta: 1.66$ (m, (H). $1.91(\mathrm{~m}, 2 \mathrm{H}) .1 .99(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}$.

3H), $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{t}$, $2 \mathrm{H}, J 9.3 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J 8.5 \mathrm{~Hz}), 7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~m}, 5 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~m}, 4 \mathrm{H})$, 7.72 (m, 2H), 7.75 (br d, 1H, J 8.5 Hz), 7.85 (d, 1H, J $8.9 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J 8.1 \mathrm{~Hz}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz})$ ppm. ${ }^{13} \mathrm{C}$ NMR 8: $22.93\left(\mathrm{CH}_{2}\right), 23.23\left(\mathrm{CH}_{2}\right), 23.39$ $\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}} 24.8 \mathrm{~Hz}\right), 23.71\left(\mathrm{CH}_{2}, \mathrm{~d}, J_{\mathrm{CP}} 23.5 \mathrm{~Hz}\right)$, $41.07\left(\mathrm{CH}_{3}\right), 41.59\left(\mathrm{CH}_{3}\right), 55.21\left(\mathrm{CH}_{2}, \mathrm{~d}, \mathrm{~J}_{\mathrm{CP}} 14.2\right.$ $\mathrm{Hz}), 56.80\left(\mathrm{CH}_{2}\right.$, d, $\left.J_{\text {CP }} 11.9 \mathrm{~Hz}\right), 119.83(\mathrm{CH}), 121.62$ (CH), 123.66 (CH), 123.85 (CH), 125.79 (CH), 125.92 (CH), 126.10 (CH), 126.31 (CH), 126.91 (C), 127.41 (CH), 127.87 (CH), $128.25(\mathrm{CH}), 128.33$ (C), 128.81 $\left(2 \mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}} 10.6 \mathrm{~Hz}\right), 129.47\left(\mathrm{C}, \mathrm{d}, J_{\mathrm{CP}} 52.6 \mathrm{~Hz}\right)$, 129.56 (C), 129.82 (CH), 130.29 (C), 130.33 (C. part of a d), $131.25(\mathrm{CH}), 131.28(\mathrm{CH}), 131.53\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{CP}}\right.$ 14.9 Hz), $131.92\left(\mathrm{CH}, \mathrm{d}, J_{\mathrm{cp}} 15.0 \mathrm{~Hz}\right), 132.18(\mathrm{CH}, \mathrm{d}$, $\left.J_{\text {Cp }} 9.2 \mathrm{~Hz}\right), 132.34\left(\mathrm{CH}, \mathrm{d}, J_{\text {Cp }} 8.9 \mathrm{~Hz}\right), 132.51(\mathrm{CH}$, d, $J_{\text {Cr }} 5.2 \mathrm{~Hz}$), $133.03\left(\mathrm{CH}, \mathrm{d}, J_{\text {CP }} 5.1 \mathrm{~Hz}\right), 134.58$ (C), $134.80(\mathrm{C}), 141.28$ (C, dd, $J_{\text {CP }} 36.6,47.5 \mathrm{~Hz}$), 142.92 (C. dd. $J_{\mathrm{CP}} 36.7,48.6 \mathrm{~Hz}$), 147.81 (C). 149.54 (C) ppm. ${ }^{31} \mathrm{P}$ NMR $\delta:+60.1,+61.5$ (AB-system, J_{AB} $71.7 \mathrm{~Hz}) \mathrm{ppm}$. FAB-MS: $817.5\left(\mathrm{M}^{+} \mathrm{H}, ~ 100 \%\right.$); the isotopic pattern observed is as expected for $\mathrm{C}_{46} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NiP}_{2}$. Anal. Found: C. 66.61; H, 5.20; N, 3.35%. $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NiP}_{2}$ Calc.: C. 67.67; H. 5.43; N . 3.43\%.
3.5. Asymmetric catalytic reactions (standard procedures)

3.5.1. Reaction (1), Procedure | |8a|

A dried 80 ml Schlenk tube was charged with 10 ml of dy Et, O. After adding $\mathrm{NiCl}_{2}(4.6 \mathrm{mg}, 0.04$ mmol, $0.5 \mathrm{~mol} \mathrm{~F}^{2}$) and the ligand ($0.04 \mathrm{mmol}, 0.5 \mathrm{~mol} / \mathrm{c}$) the mixture was degassed. A small Schlenk tube with calibration was cooled to $0{ }^{\circ} \mathrm{C}$ and vinyl bromide (0.5 ml , 7.1 mmol) was allowed to condense. The catalyst solution was cooled to $=78{ }^{\circ} \mathrm{C}$ and vinyl bromide and 1 -phenylethyl magnesium chloride ($11.8 \mathrm{mmol}, 1.7$ equiv., solution 0.42 molar in $\mathrm{Et}_{2} \mathrm{O}$) was added subsequently while stirring. The Schlenk tube was carefully sealed and immersed into an ice bath. After 20 h the reaction was quenched by dropwise addition of 2 N HCl . The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined extracts were wewhed (saturated NaHCO_{3}, water, brine) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). The solvent was removed under viacuo at RT and the residue was Kugetrohr distilled (bath temperature $T_{\text {man }} 120^{\circ} \mathrm{C}, 20$ Torr). ${ }^{1} \mathrm{H}$ NMR showed the presence of minor amounts of ethyl benzene and styrene. The chemical yield was corrected accordingly. 'H NMR $\delta: 1.36(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}), 3.47$ (m. 1H), 5.04 (m. 2H), 6.01 (ddd, 1H, J 6.4, 10.3, 16.7 $\mathrm{Hz}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. The enantiomeric excess was estimated using enantioselective GC [21] (Lipodex C^{*}, FS. $0.25 \mathrm{~mm} \times 50 \mathrm{~m}, 1 \mathrm{~atm} \mathrm{H}_{2}$, column
$28-30^{\circ} \mathrm{C}$, injector $175^{\circ} \mathrm{C}$, split $\mathrm{I}: 100$, sample 30 mg in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mu \mathrm{l}$ injected).

3.5.2. Reaction (2), Procedure II [9a]

To a degassed solution of allyl phenyl ether (2.68 g , $2.74 \mathrm{ml}, 20 \mathrm{mmol}$) in 20 ml of dry $\mathrm{Et}_{2} \mathrm{O}$ was added NiCl_{2} ($5 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2 \mathrm{~mol} \%$) and the ligand ($0.04 \mathrm{mmol}, 0.2 \mathrm{~mol} \%$). After stirring for 20 min the mixture was cooled in an ice bath and a solution of 1-phenylethyl magnesium chloride (20 mmol of a 0.42 molar solution in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise. The ice bath was removed and the mixture was stirred at RT. The progress of the conversion was followed by NMR. The reaction was quenched by careful addition of dilute HCl . The organic layer was separated and the aqueous layer was extrarted repeatedly with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were shaken with NaOH solution (10%) to remove phenol, washed neutral and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under vacuo at RT and the residue was subjected to Kugelrohr distillation to remove the catalyst and 2,3-diphenylbutane (bath temperature $T_{\max } 125^{\circ} \mathrm{C}$ at 25 Torr). The distillate was filtered over a short column to remove trices of allyl phenyl ether and/or polar impurities (silica gel, $15 \times 2.2 \mathrm{~cm}^{2}$, PE). ${ }^{1} \mathrm{H}$ NMR $\delta: 1.25(\mathrm{~d}, 3 \mathrm{H}, J 6.9 \mathrm{~Hz}), 2.21-2.32(\mathrm{~m}$, 1H), 2.34-2.42 (m, lH), 2.74-2.83 (m, lH), 4.94-5.01 (m, 2H), 5.66-5.76 (m, 1H), 7.18 (m, 3H), 7.29 (m, $2 \mathrm{H}) \mathrm{ppm}$. The enantiomeric excess was estimated using enantioselective GC [22] (50% Octakis(6.0 -methyl-2,3. di-O-pentyl)- γ-cyclodextrin, $\mathrm{FS}, 0.25 \mathrm{~mm} \times 25 \mathrm{~m}, 0.5$ atm H_{2}, column $60^{\circ} \mathrm{C}$, injector $175^{\circ} \mathrm{C}$, split $1: 100$, sample 30 mg in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mu \mathrm{l}$ injected).

3.5.3. Reaction (3). Procedure I/IA (with BSA)

A solution of $\left[\mathrm{Pd}\left(\eta^{1} \cdot \mathrm{C}_{3} \mathrm{~J} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(1.8 \mathrm{mg}, 0.005$ mmol . $1 \mathrm{~mol} \% \mathrm{Pd}$) and the appropriate ligand (0.01 $\mathrm{mmol}, 1 \mathrm{~mol} \%$) was prepared in 1 ml of degassed $\mathrm{CH}_{3} \mathrm{Cl}_{2}$. To this pale yellow solution were subsequently added under argon 1 mmol of substrate (252 mg of (E)-1,3-diphenylprop-3-ene-1-yl acetate, 128 mg of (E)-pent-3-ene-2-yl acetate respectively), dimethyl malonate ($396 \mathrm{mg}, 340 \mu \mathrm{l}, 3 \mathrm{mmol}$), BSA ($610 \mathrm{mg}, 741$ $\mu \mathrm{l}, 3 \mathrm{mmol}$) and a catalytic amount of KOAc. The reaction mixture was degassed and then stirred at RT. In the case of (E)=1,3-diphenylprop-3-ene-1-yl acetate as substrate, the progress of the reaction was monitored via TLC ($R_{\mathrm{f}} 0.32$ (educt), 0.11 (product), PE/EE $95: 5$). The reaction was stopped by adding 15 ml of $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed twice with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the remaining yellow oil was chromatographed on silica gel.
14. Column chromatography (silica gel, $25 \times 2.5 \mathrm{~cm}^{2}$, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 75: 25$, UV 220 nm). The isolated product was found to be pure by NMR. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.00(\mathrm{~d}$, $3 \mathrm{H}, J 5.9 \mathrm{~Hz}$, $1.59(\mathrm{~d}, 3 \mathrm{H}, J 5.4 \mathrm{~Hz}), 2.86(\mathrm{~m}, 1 \mathrm{H})$,
$3.24(\mathrm{~d}, 1 \mathrm{H}, J 8.8 \mathrm{~Hz}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.30$ (m, lH), $5.49(\mathrm{dq}, 1 \mathrm{H}, J 6.4,9.3 \mathrm{~Hz}) \mathrm{ppm}$. The enantiomeric excess was estimated by using enantioselective GC (50% Octakis(6-O-methyl-2,3-di-O-pentyl)-$\boldsymbol{\gamma}$-cyclodextrin, FS, $0.25 \mathrm{~mm} \times 25 \mathrm{~m}, 0.5 \mathrm{~atm} \mathrm{H}_{2}$, column $55^{\circ} \mathrm{C}$, injector $175^{\circ} \mathrm{C}$, split $1: 100$, sample 30 mg in 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mu \mathrm{l}$ injected. Specific rotation calculated for optically pure 14: $[\alpha]_{D}^{23} \pm 27.9$ $\left\{c=1.1, \mathrm{CHCl}_{3}\right\}[5 \mathrm{i}]$.
15. Column chromatography (silica gel, $10 \times 2.2 \mathrm{~cm}^{2}$, $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50$, UV 290 nm). The isolated product was found to be pure by NMR. 'H NMR δ : 3.50 (s, $3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J 10.8 \mathrm{~Hz}), 4.25(\mathrm{dd}$, $1 \mathrm{H}, J 8.4,10.8 \mathrm{~Hz}), 6.31(\mathrm{dd}, 1 \mathrm{H}, J 8.4,15.8 \mathrm{~Hz}$), $6.46(\mathrm{~d}, 1 \mathrm{H}, J 15.8 \mathrm{~Hz}), 7.16-7.35(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm}$. E.e. was estimated by using a chiral shift reagent (Eu(hfc) ${ }_{3}$, ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}, integration of one singlet of diastereotopic OCH_{3} groups which shifted from 3.67 to ca. $4.0 \mathrm{ppm}, \Delta 0.06-0.08 \mathrm{ppm}$) and was confirmed by chiral HPLC (Chiralcel OD-H, $250 \times 4.6 \mathrm{~mm}^{2}, 0.5 \mathrm{ml}$ min^{-1}, 2-propanol/n-hexane (2:98)). Specific rotation calculated for optically pure (S)-15: $[\alpha]_{D}^{20}-22.4\{c=$ $\left.1.8, \mathrm{CHCl}_{3}\right\}$ [5h].

3.5.4. Reaction (3), Procedure IIIB with NaH

A solution of (E)-1,3-diphenylprop-3-ene-1-yl acetate ($252 \mathrm{mg}, 1 \mathrm{mmol}$) in 4 ml of dry THF was degassed, the isolated palladium complex $\mathrm{L}^{*} \mathrm{PdCl}_{2}(\mathrm{~L} *=2 \mathrm{~A}-6 \mathrm{~A}$, $0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%$) [6] was added and the solution was stirred for 15 min [23]. A solution of the malonate anion was prepared at RT by adding NaH dispersion $(63 \mathrm{mg}$. 1.5 mmol) in portions to a degassed solution of dimethyl malonate ($198 \mathrm{mg}, 171 \mu \mathrm{l}, 1.5 \mathrm{mmol}$) in 4 ml of THF. After 30 min the resulting turbid solution was added to the ice cooled solution containing allyl acetate and the catalyst and the reaction was stirred at RT. The reaction was quenched by adding a small amount of 2 N HCl and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$. The combined extracts were washed with brine until neutral and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent the crude product was purified by chromatography as given for Procedure IIIA.

3.6. X-ray structural analyses

Data were collected on a modified STOE diffractometer equipped with an N_{2}-cold-stream low temperature device (92 K) using Mo $\mathrm{K} \alpha$ radiation. Structure solutions were carried out by direct methods (SHELXTL-PC [24a]) followed by least-squares refinement against F^{2} with no σ-cutoff being applied (ShelXL-93 [24b]). Anisotropic atomic displacement parameters (adps) were assigned to all non-hydrogen atoms. Positions of hydrogen atoms were calculated according to stereochemical aspects. Atomic coordinates are listed in Tables 4-6 [25].

Table 4
Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 2 A

Atom	\boldsymbol{r}	y	$=$	$U_{\text {(eq) }}$
P(1)	1118(2)	2415(1)	299(2)	22(1)
$0(2)$	2148(6)	3048(3)	3274(5)	23 (1)
C(3)	2209(9)	2404(4)	3251(9)	$23(2)$
C(4)	2548(9)	2215(4)	1879(9)	24(2)
C(11)	1452(9)	3921(4)	4221(8)	19(2)
C(12)	1555(9)	3306(4)	4268(8)	19(2)
C(13)	1066(9)	2974(4)	5281(8)	22(2)
C(14)	397(9)	3266(4)	6187(9)	23(2)
C(15)	241(9)	3877(4)	6161(9)	23(2)
C(16)	-477(8)	4186(5)	7075(9)	24(2)
C(17)	-630(9)	4785(5)	7025(9)	28(2)
C(18)	-72(9)	5130(5)	6091(8)	27(2)
C(19)	624(9)	4851(4)	5186(9)	22(2)
C(20)	762(8)	4225(4)	5163(9)	22(2)
C(21)	1627(9)	1922(4)	-986(9)	25(2)
C(22)	915(10)	1406(4)	-1518(9)	27(2)
C(23)	2833(9)	2096(4)	-1479(9)	25(2)
C(24)	1373(10)	1068(5)	-2538(10)	33(2)
C(25)	3307(10)	1759(4)	-2447(9)	27(2)
C(26)	2596(10)	1246(5)	-2981(9)	30(2)
C(31)	- 519(9)	2040(4)	631(8)	21(2)
C(32)	- 423 (9)	1468(4)	1198(9)	23(2)
C(33)	- 1702(9)	1171(4)	1319(9)	25(2)
P(51)	-1986(2)	3093(1)	-448(2)	22(1)
O(52)	-462(5)	4533(3)	2026(6)	$23(1)$
C(53)	$-1277(9)$	4187(4)	860(9)	24(2)
C(54)	- 1058(9)	$3531(4)$	1106x9)	$22(2)$
C(61)	19969)	4279(4)	$3175(8)$	102)
C(62)	1038(9)	4570 4)	2123(9)	$21(2)$
C(6)	1516(9)	4)63(4)	121609)	209)
C(64)	$2957(9)$	$3031(4)$	$1328(9)$	$22(2)$
C(65)	4011(9)	4755(4)	$2373(9)$	21(3)
C(66)		$4 \mathrm{4} 30 \times 3)$		$29(2)$
E(67)	$6535(10)$	4s\%o(5)	3509(9)	28(2)
C(6)	600)(9)	412 C 31	4415(9)	$2 \mathrm{~N}(2)$
C(69)	$4595(9)$	$4000 \times 4)$	4344(9)	33(${ }^{\text {2 }}$
C(70)	354(9)	$4858(4)$	$3308(8)$	$19(2)$
C(71)	$=3883(9)$	3293(4)	- $340(9)$	23(2)
C(73)	$=4484(9)$	$3341(4)$	$632(9)$	$33(2)$
C73)	$=4748(9)$	$346 \times \times(4)$	- $18.35(9)$	$25(3)$
C(74)	$=5893(10)$	3535(4)	485(9)	260)
(775)	-6173(9)	3658(5)	-1987(9)	28(2)
C(76)	-6727(9)	3710(5)	-809(9)	28(2)
C(81)	- $1823(8)$	$2341(5)$	$237(8)$	2*2)
C(33)	- 3009(9)	$2013(4)$	341(9)	25(2)
C(83)	- $3016(9)$	1433(4)	843(9)	25(2)
O(91)	$3935(7)$	16663)	227(7)	39(2)
(992)	$3389111)$	$514(5)$	11006(1)	41(2)
C(93)	$4021(11)$	645(6)	3552(11)	$50(3)$
CY4)	$4508(12)$	6516)	1700(12)	$53(3)$
C(93)	5314(1)	367(6)	3117(12)	$59(4)$
O(101)	$3804(8)$	1996(5)	$565.49)$	60(3)
C(102)	$7008(14)$		$6168(13)$	(64(3)
((103)	$6291(13)$	2+87(7)	$5057(14)$	$63(3)$
C(104)	$8017(13)$	1741(6)	$5153(12)$	$55(3)$
C(103)	7304(13)	2254(6)	422012)	S0(3)

$v_{(\text {eq) }}$ is defined as one third of the trace of the orthogomalized u_{i} tensor.

2A. Slow evaporation of a concentrated THF solution of (S) 2 A afforded flat plates which easily lose solvent upon exposure to air. The crystals are monoclinic. space
group $P 2(1) ; a=9.436(2), \quad b=22.421(4), \quad c=$ 9.828(4), $\beta=104.33(3), V=2014.6(7) \AA^{3}, Z=2, d_{\text {calc }}$ $=1.281 \mathrm{~g} \mathrm{~cm}^{-3}$, maximum 2θ for data collection 45°. Refinement of 504 parameters against 2758 intensity

Table 5
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for $2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}$

Atom	\boldsymbol{x}	y	:	$U_{(64)}$
Pd	$5934(1)$	7599(1)	7856(1)	14(1)
$\mathrm{Cl}(\mathrm{A})$	$6663(1)$	6174(1)	8142(1)	24(1)
CKB)	$5014(1)$	7799(1)	8888(1)	$21(1)$
P(1)	6884(1)	$7532(1)$	$6912(1)$	16(1)
O(2)	8685(2)	8715(2)	7655(2)	18(1)
C(3)	8794(3)	7746(3)	7655(2)	21(1)
C(4)	8296(3)	7342(3)	7031(2)	20(1)
C(11)	8999(3)	10106(3)	8212(2)	16(1)
C(12)	9147(3)	9178(3)	8191(2)	16(1)
C(13)	9742(3)	$8720(3)$	8697(2)	20(1)
C(14)	10207(3)	9205(3)	9210(2)	20(1)
C(15)	10088(3)	10158(3)	9257(2)	18(1)
C(16)	10572(3)	10663(3)	9782(2)	$21(1)$
C(17)	10442(4)	11588(3)	9815(2)	22(1)
C(18)	9801(3)	12033(3)	9335(2)	21(1)
C(19)	9328(3)	11569(3)	8816 (2)	18(1)
C(20)	9469(3)	10604(3)	8756(2)	14(1)
$\mathrm{C}(21)$	6447(4)	6685(3)	6307(2)	$21(1)$
C(22)	7085(4)	5985(3)	6004(3)	32(1)
C(23)	$5411(4)$	6770(3)	6071(2)	20(1)
C(24)	6087(5)	5382(4)	5574(3)	$4(\mathrm{CI})$
C(25)	5017(5)	6179(3)	557(2)	32(1)
C(26)	5687(5)	5493(4)	5332(3)	$30(1)$
C(3)	6735(3)	$858503)$	0446(2)	17(1)
C(32)	$7278(4)$	$8707(3)$	$5830(2)$	$33(1)$
C(3)	二 $9097(4)$	9578(3)	5448(2)	2+(1)
P(51)	$5387(1)$	$8901(1)$	7964(1)	14(1)
O(3)	$6926(2)$	10758(2)	$8433(2)$	$21(1)$
C(53)	6465(3)	9552(3)	$8420 \times 2)$	$21(1)$
C(54)	$5402(3)$	9842(3)	8052(2)	19(1)
C(61)	$8411(3)$	$10618(3)$	7084(2)	1611)
C(62)	7415(3)	10962(3)	7817(2)	191)
C(63)	6894(4)	11549(3)	7372(2)	$23(1)$
C(64)	$7363(4)$	11776(3)	$6771(2)$	25(1)
C(65)	8363(4)	11429(3)	6595(2)	$21(1)$
$\mathrm{C}(16)$	8462(4)	11649(3)	5967(2)	2+(1)
C(6)	9852(4)	$11330(3)$	581s(2)	26(1)
C(68)	10398(4)	10785(3)	6286(2)	24(1)
C(69)	9945(3)	10558(3)	$6893(2)$	$19(1)$
C(70)	$8905(3)$	108.57(2)	7060(2)	171)
C(71)	$3899(3)$	88Gat3)	7233(2)	(90)
(773)	$3120 \mathrm{Ma)}$	8912(3)	7734(2)	20(1)
C(73)	3599(3)	$8753(3)$	$6561(2)$	20(1)
C(74)	2066(3)	8850 (3)	7559(3)	$23(1)$
C(75)	2535(3)	8694(3)	6384(2)	24(1)
C(76)	1775(3)	874.14)	6884(3)	23(1)
C(81)	5999(3)	9207(2)	$669(4)$	15(1)
C(82)	5812(3)	10027(3)	6342(2)	19(1)
C(83)	$6371(4)$	10196(3)	5749(2)	22(1)
C(96)	7753(5)	7374(5)	9640(3)	16(1)
C(97)	$7231(11)$	6331(1)	9649(7)	29(3)
C(98)	7180(5)	6643(5)	9752(3)	38(1)

$\overline{U_{\text {equ }} i}$ ir 'efined as one third of the trace of the orthogonalized U_{11} lensor.

Table 6
Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for $11 \mathrm{~A} \cdot \mathrm{NiCl}_{2}$

Atom	x	y	2	$U_{\text {(eq) }}$
Ni	753(1)	399(1)	2472(1)	18(1)
Cl(A)	297(2)	1768(2)	3227(2)	23(1)
Cl(B)	-895(2)	88(2)	1449(2)	28(1)
P(1)	2442(2)	670(2)	3399(2)	19(1)
N(2)	5993(7)	2089(5)	2372(5)	19(2)
C(3)	5828(9)	2653(7)	3281(6)	24(2)
C(4)	4878(9)	2086(7)	3792(6)	26(2)
C(S)	356019)	1707(7)	3228(6)	24(2)
C(11)	5987(8)	3143(6)	1343(6)	18(2)
C(12)	6643(8)	2626(6)	1774(6)	17(2)
C(13)	7978(8)	2604(7)	1631(6)	22(2)
C(14)	8621(8)	3066(7)	1038(6)	22(2)
C(15)	7971 (8)	3551(6)	533(6)	14(2)
(16)	8591(9)	3961(6)	-120(6)	18(2)
C(17)	7915(9)	4385(7)	-637(6)	23(2)
C(18)	6595(8)	4410(6)	-522(6)	21(2)
C(19)	5975(9)	4032(6)	139(6)	21(2)
C(20)	6633(8)	3585(6)	688(6)	172)
C(21)	2162(8)	817(7)	4585(6)	19(2)
C(22)	2131(9)	1718(8)	5143(6)	29(3)
C(23)	1858(9)	18(8)	4925(6)	29(3)
C(24)	1809(9)	1797(8)	$6051(7)$	33(3)
C(25)	1562(9)	$118(8)$	5824(7)	31(3)
C(26)	1522(9)	1001(9)	6391(7)	36(3)
C(31)	3287(8)	-329(6)	$3112(6)$	19(2)
C(32)	4394(9)	-406(7)	3634(7)	27(2)
C(33)	5032(9)	$-1155(7)$	$3319(7)$	27(2)
C(41)	6488(9)	1215(7)	2384(7)	29(3)
P(51)	1366(2)	-865(2)	1736(2)	19(1)
N(52)	3596(7)	1660)(5)	742(5)	$19(2)$
C(53)	2522(9)	897(6)	$738(7)$	23(2)
C(54)	2951(8)	- $49(6)$	534(6)	$21(2)$
C(5s)	1824(9)	-876(7)	584(6)	$22(2)$
C(61)	$4633(8)$	$3298(7)$	1567(6)	20(2)
C(62)	3515(9)	2581(6)	$1273(6)$	18(2)
C(6.3)	2282(8)	$2782(7)$	1561(6)	$18(2)$
C(64)	$2165(8)$	3041(7)	$2081(6)$	$19(2)$
C(65)	$3252(9)$	439016)	$2351(6)$	$18(2)$
C(66)	$3148(10)$	5299(7)	2878(6)	$26(2)$
C(67)	4197(10)	$6014(7)$	$3135(7)$	$31(3)$
C(68)	5443(10)	5839(7)	2900\%7)	35(3)
C(69)	5595(9)	4958(7)	2398(6)	25(2)
C(70)	4499(8)	4206(6)	2092(6)	18(2)
C(71)	223(8)	- 1975(6)	1602(6)	$21(2)$
C(72)	-803(9)	-2262(7)	919(6)	25(2)
C(73)	320(9)	-2567(7)	2190(6)	26(2)
C(74)	- 1689(9)	-3103(7)	825(7)	26(2)
C(75)	-563(10)	-3418(7)	2084(7)	30(3)
C(76)	-1578(9)	-3684(7)	13976)	31(3)
C(81)	2836(8)	- 1010(7)	2319(6)	$19(2)$
C(82)	3510(9)	-1756(7)	2004(7)	26(2)
C(83)	4605(9)	-1817(7)	2505(7)	293)
C(91)	4201(9)	1603(7)	-127(6)	27(2)
C(101)	$522(17)$	5914(18)	4197(15)	129(8)
C(102)	1479(26)	7203(16)	4650 (8)	161(12)
C(104)	-2042(60)	5375(45)	$4355(71)$	1020(126)
$\mathrm{C}(105)$	3101(66)	4924(22)	5099(15)	570)(61)

$\overline{U_{(s 4)}}$ is defined as one third of the trace of the orthogonalized $U_{1 j}$ tensor.
data converged at the following values for reliability indices: $\quad w R_{2}=\sum\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \sum\left[w\left(F_{o}^{2}\right)^{2}\right]\right]=$ 0.182 for 2192 reflections, $R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| /$ $\sum\left|F_{0}\right|=0.067$ for 2758 reflections with $F_{0}>4 \sigma\left(F_{0}\right)$. There are two additional well-ordered THF molecules in the asymmetric unit.
$2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}$. From a dilute solution of (S)-2A and $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}_{2} \mathrm{Cl}_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ grew colorless prisms after several days. The crystals are orthorhombic, space group $P 2(1) 2(1) 2(1) ; a=12.572(3), b=$ $14.640(5), c=19.617(4), V=3610.6(14) \AA^{3}, \quad Z=4$, $d_{\text {calc }}=1.490 \mathrm{~g} \mathrm{~cm}^{-3}$, maximum 2θ for data collection 60°. Refinement of 490 parameters against 6397 intensity data converged at the following values for reliability indices: $w R_{2}=\sum\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2} / \sum\left[w\left(F_{o}^{2}\right)^{2}\right]\right]=$ 0.106 for 6397 reflections, $R_{1}=\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| /$ $\sum\left|F_{0}\right|=0.038$ for 5925 reflections with $F_{0}>4 \sigma\left(F_{\mathrm{o}}\right)$.
$11 \mathrm{~A} \cdot \mathrm{NiCl}_{2}$. From a solution of racemic 11 A and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$ grew needle-like or-ange-brown crystals after a few hours. The crystals are triclinic, space group $P \overline{1} ; a=10.379(2), b=14.695(2)$, $c=15.146(3), \quad \alpha=103.98(3), \quad \beta=91.53(3), \quad \gamma=$ 100.23(3), $V=2220.1(8) \AA^{3}, Z=2, d_{\text {calc }}=1.305 \mathrm{~g}$ cm^{-3}, maximum 2θ for data collection 46°. Refinement of 515 parameters against 4565 intensity data converged at the following values for reliability indices: $w \boldsymbol{R}_{2}$ $\left.=\sum\left[w\left(F_{0}^{2}-F_{c}^{2}\right)^{2} / \sum\left[w\left(F_{0}^{2}\right)^{2}\right]\right]=0.21\right]$ for 4565 reflections, $R_{1}=\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{\mathrm{o}}\right|=0.068$ for 3141 reflections with $F_{0}>4 \boldsymbol{\sigma}\left(F_{0}\right)$.

The structures of $2 \mathrm{~A} \cdot \mathrm{PdCl}_{2}$ and $11 \mathrm{~A} \cdot \mathrm{NiCl}_{2}$ contain disordered solvent and several dummy atoms were introduced to account for residual electron density.

4. Conclusions

The general usefulness of macrocyclic diphosphine ligands has been demonstrated for the palladium catalyzed allylic substitution provided one of the allylic intermediates, stabilized by steric and/or electronic interactions, predominates. Their absence for substrates like (E)-pent-3-ene-2-yl acetate or cyclohex-1-ene-3-yl acetate seems to be responsible for poor e.e. values. An improvement can be expected for more rigid ligand structures with enlarged perimeter, eventually forcing the allyl complex into better proximity to the chiral environment. Assuming Curtin-Hammett conditions and the enantioselective step to be under reactant control, the sense and magnitude of the asymmetric induction will be the result of both the preference of one allylic intermediate and the regioselectivity of the nucleophilic attack.

Acknowledgements

We are grateful to Dr. G. Remberg for recording FAB-MS. This work was generously supported by the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (P09233-CHE. P6537C).

References and notes

[1] 1. Ojima (ed.), Catalytic Asymmetric Synthesis, VCH, Weinheim. 1993.
[2] H. Brunner and W. Zettimeier, Handhook of Enumtioselective Cutalysis. VCH, Weinheim, 1993.
[3] (a) T. Hayashi. M. Fukushima, M. Konishi and M. Kumada, Tetruhedron Letl., 27 (1980) 79; (b) T. Hayashi, A. Yamamoto, M. Hojo and Y. Ito, J. Chem. Soc., Chem. Commun., (1989) 495.
[4] T. Hayashi, K. Hayashizaki, T. Kiyoi and Y. Ito, J. Am. Chem. Soc., 110 (1988) 8153.
[5] Cf. P=P ligands: (a) M. Yamagucchi. T. Shima, T. Yamagishi and M. Hida, Tetrahedron: Asymm.. 2 (1991) 663; (b) A. Togni. C. Breutel, A. Schnyder, F. Spindler, H. Landert and A. Tijani. J. Am. Chem. Soc.. 116 (1994) 4062. $\mathrm{N}-\mathrm{N}$ ligands: (c) U. Leutenegger, G. Umbricht, C. Fahrni, P, von Matt and A. Pfaltz, Tetruhedron, 48 (1992) 2143; (d) H. Kobota, M. Nakajima and K. Koga, Tetruhedron Lett, 34 (1993) 8135; (e) D. Tanner, P.G. Andersson. A. Harden and P. Somfai, Tetruhedron Lett. 35 (1994) 4631: (f) P. Gamez, B. Dunjic, F. Fache and M, Lemaire, Tetrahedrom: Asymm., 6 (1995) 1109, P-N ligands: (g) G.J. Dawson, C.G. Frost, J.M.I. Williams and S.J. Coote. Tetruhcdron Lett, 34 (1993) 3149; (h) J, Sprinz and G. Helmchen, Trtruhedrun Leth., 34 (1993) 1769; (i) P, von Matt and A. Pfolts, Angew, Chem, 105 (1993) 614 (j) B.M. Trost and R.C. Bunt. J. Am, Chem, Soc., 1/t (1994) 4089; (k) J. Sprinz, M. Kielef, G. Helmeben, M. Regeelin, G. Hutner, O, Walter and L. Zactnai. Tetrahedron Lett, 35 (1994) 1573: (1) G. Dawson. JM.J. Williants and S.J, Coole, Tatrahedrom Leth. 36 (1995) 401; (fa) H. Kubota and K. Koga, Tetpahedron Leth. 33 (1994) 6089; (n) P. Wimmer and M. Widhalm, Terrahertron: Asymm. 6 (1995) 657.
[6] (a) M. Widhalm, H, Kalchausee and H, Kuhlig, Holu, Chim, Aitu, 77 (1094) 409; (b) M. Widhatm and G. Klintschar, Chem. Bef, 137 (1994) 141I; (e) ef, R.B. Kress, E.N. Duester, M.C. Etter, I.C. Paul and D.Y. Curtin, J. Aw, Chem. Sec., 102 (1980) 7709.
[7] P. Wimmer and M. Widhalm, Phesphorus, Suffier and Silicon. 106 (1995) 105.
[8] (a) T. Hayashi, M. Konishi, M. Fukushima, T. Mise, M. Kagotani, M. Tajika and M. Kumada, J. Am. Chem. Soc., 104 (1982) 180; (b) J.M. Brown and N.A. Cooley, Chem. Rev. 88 (1988) 1031; (c) J.M. Brown and N.A. Cooley, Organometallics, 9 (1990) 353; (d) A. Indolese and G. Consiglio, J. Organomer. Chem. 463 (1993) 23.
[9] (a) G. Consiglio, O. Piccolo, L. Roncetti and F. Morandini, Tetrahedron. 42 (1986) 2043; (b) G. Consiglio and A. Indolese, Organometalics, 10 (1991) 3425.
[10] (a) B.M. Trost, Acc. Chem. Res., 13 (1980) 385; (b) P.R. Auburn, P.B. Mackenzie and B. Bosnich, J. Am. Chem. Soc., 107 (1985) 2033; (c) P.B. Mackenzie, J. Wehlan and B. Bosnich. J. Am. Chem. Soc., 107 (1985) 2046; (d) [5k]; (e) J.M. Brown. D.I. Hulmes and P.J. Guiry, Terrahedron, 50 (1994) 4493.
[11] J.V. Allen, J.F. Bower and J.M.J. Williams, Tetrahedron: A.symm., 5 (1994) 1895.
[12] (a) M.F. Rettig and P.M. Maitlis, Inorg, Synth., 2 (1943) 167; (b) K. Moseley and P.M. Maitlis, J. Chem. Soc., Daltom Trams., (1974) 169.
[13] Highest asymmetric inductions reported: (E)-pent-3-ene-2-yl acetate, 97% e.e. [5i]; 3-aceloxy-cyclohexene, 96% e.e. [5j].
[14] (a) K. Tamao, Y. Kiso, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 94 (1972) 9268; (b) Y. Kiso, K. Tamao and M. Kumada, J. Organomet. Chem., 50 (1973) C12.
[15] Molecular modelling experiments were performed on a Silicon Graphics Workstation using the program sybyl. (Trypos) version 6.2; details will be published elsewhere.
[16] L.I. Smith, H.H. Hoehn and A.G. Whitney, J. Am. Chem. Soc.. 62 (1940) 1863.
[17] F.G. Mann and A.J.H. Mercer, J. Chem. Soc., Perkin Trams. I, (1972) 1631.
[18] P. von Matt. O. Loiseleur, G. Koch, A. Pfaliz, C. Lefeber, T. Feucht and G. Helmehen, Tetrahedrom: Asymm., 5 (1994) 573.
[19] (a) M.H. Nomura, Bull. Soc. Chem. Fr.. 37 (1925) 1245; (b) [100].
[20] H.J. Lautenschlager, Thesis, Regensburg, 1989.
[2I] H. Brumer, H. J. Lautenschlager, W.A. Kidnig and R. Krebber. Chum. Ber. 123 (1990) 847.
[22] W.A. Künig. in Gas Chromairmgraphac Linamtioner Sepsaration with Modifled Cyclodextrins, Hlithig. Heldellorgs. 1992.
[23] Palladima: complexes of 10A and IIA were prepared in situ from ligands and PdrOAc):
[24] (a) G.M. Sheldrick, shinixine, Release 4.1, Siemens Crystallo. graphic Research Systems, 1990; (b) G.M. Sheldrick. sutid.j.-93. a program for the refinement of crystal structures from diffraction data, University of GBtingen, 1993.
[25] Supplementary data (bond length, bond angles, torsional angles and structure factors) have been deposiled at the Cambridge Crystallographic Data Centre.

[^0]: ${ }^{\circ}$ Corresponding author.

[^1]: Distances in \hat{X}. The angle between best planes through the macrocyclic perimeter (11-12-X2-3-4-(5-)PI-P51-(55-)54-53-X52-62-61) and the complex subunit (P1-M-P51).

